یک روش عددی برای مدل معادلات دیفرانسیل معمولی و جزیی زنجیره های تأمین

پایان نامه
چکیده

در این پایان نامه هدف برآنست که یک روش عددی برای شبیه سازی یک مدل ‎pde‎ و‎ode زنجیره ‎های تامین ارائه شود. این کار در دو مرحله خلاصه می شود. ابتدا، یک مدل بر اساس روش اویلر بیان می شود و سپس با ارائه اصلاحاتی نشان می دهیم که مدل معرفی شده شرط پایداری را حفظ می کند، و در نهایت اثبات همگرایی و نرخ همگرایی آن بیان می شود. این امر، با استفاده از مقایسه با جواب های حرکت موج به جلو و استفاده از بردارهای مماس تعمیم یافته انجام می شود. از طرفی هر دو روش شبکه های زمان و مکان به نتایج مشابهی از حیث اجرا و خطاهای عددی حاصل می رسند. الگوریتم ها سریع بر اساس انتخاب دقیق شبکه های زمان و مکان و ساختار داده ها مطرح می شود‎.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

متن کامل

مطالعه روش های عددی برای حل معادلات دیفرانسیل جزیی فازی

دراین پایان نامه روش های عددی برای حل معادلات دیفرانسیل جزیی فازی بحث می شود. ابتدا تعاریف لازم را بیان می کنیم سپس روش های عددی برای حل این نوع معادلات که شامل روش تفاضلات متناهی، روش حجم متناهی و روش تجزیه آدومیان است را بررسی می کنیم. شرایط لازم برای پایداری و همگرایی در بعضی روش ها بیان می شود.

15 صفحه اول

حل عددی معادلات دیفرانسیل معمولی و جزیی با استفاده از روش تبدیل دیفرانسیل

در این پژوهش، هدف مطالعه و بررسی روش تبدیل دیفرانسیل است. این روش با توجه به نیازهایی که به حل معادلات دیفرانسیل در شاخه های مختلف علوم و مهندسی وجود داشت، نخستین بار توسط ژو ‎ltrfootnote{zhou}‎پایه گذاری شد. این روش بر پایه روش سری تیلور است اما مشکلات اساسی روش تیلور، همچون محاسبه ی مشتق مراتب بالا را ندارد. با تمام ویژگی های خوب، این روش کاستی هایی نیز دارد که با کمک گرفتن از برخی تکنیک...

یک روش عددی برای مسائل مرزی دو نقطه ای برای معادلات دیفرانسیل معمولی

در این پایان نامه مسائل مقدار مرزی برای معادلات دیفرانسیل معمولی به طور مختصر بیان و به دو دسته خطی و غیر خطی تقسیم بندی شده است که رفتار این نوع مسائل برای وجود و عدم وجود جواب مورد بررسی قرار گرفته است. هم چنین یک رویکرد عددی برای حل مسائل مرزی دو نقطه ای خطی و غیر خطی ارائه شده است که از روشهای شبه نیوتن و تفاضل محدود برای آن استفاده شده است.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023